Modelling Sarcasm in Twitter, a Novel Approach
نویسندگان
چکیده
Automatic detection of figurative language is a challenging task in computational linguistics. Recognising both literal and figurative meaning is not trivial for a machine and in some cases it is hard even for humans. For this reason novel and accurate systems able to recognise figurative languages are necessary. We present in this paper a novel computational model capable to detect sarcasm in the social network Twitter (a popular microblogging service which allows users to post short messages). Our model is easy to implement and, unlike previous systems, it does not include patterns of words as features. Our seven sets of lexical features aim to detect sarcasm by its inner structure (for example unexpectedness, intensity of the terms or imbalance between registers), abstracting from the use of specific terms.
منابع مشابه
Detecting Sarcasm on Twitter: A Behavior Modeling Approach by Ashwin Rajadesingan A Thesis Presented in Partial Fulfillment of the Requirement for the Degree Master of Science Approved September 2014 by the Graduate Supervisory Committee: Huan Liu, Chair
Sarcasm is a nuanced form of language where usually, the speaker explicitly states the opposite of what is implied. Imbued with intentional ambiguity and subtlety, detecting sarcasm is a difficult task, even for humans. Current works approach this challenging problem primarily from a linguistic perspective, focussing on the lexical and syntactic aspects of sarcasm. In this thesis, I explore the...
متن کاملSarcasm Detection on Czech and English Twitter
This paper presents a machine learning approach to sarcasm detection on Twitter in two languages – English and Czech. Although there has been some research in sarcasm detection in languages other than English (e.g., Dutch, Italian, and Brazilian Portuguese), our work is the first attempt at sarcasm detection in the Czech language. We created a large Czech Twitter corpus consisting of 7,000 manu...
متن کاملValenTo: Sentiment Analysis of Figurative Language Tweets with Irony and Sarcasm
This paper describes the system used by the ValenTo team in the Task 11, Sentiment Analysis of Figurative Language in Twitter, at SemEval 2015. Our system used a regression model and additional external resources to assign polarity values. A distinctive feature of our approach is that we used not only wordsentiment lexicons providing polarity annotations, but also novel resources for dealing wi...
متن کاملPutting Sarcasm Detection into Context: The Effects of Class Imbalance and Manual Labelling on Supervised Machine Classification of Twitter Conversations
Sarcasm can radically alter or invert a phrase’s meaning. Sarcasm detection can therefore help improve natural language processing (NLP) tasks. The majority of prior research has modeled sarcasm detection as classification, with two important limitations: 1. Balanced datasets, when sarcasm is actually rather rare. 2. Using Twitter users’ self-declarations in the form of hashtags to label data, ...
متن کاملSemi-Supervised Recognition of Sarcasm in Twitter and Amazon
Sarcasm is a form of speech act in which the speakers convey their message in an implicit way. The inherently ambiguous nature of sarcasm sometimes makes it hard even for humans to decide whether an utterance is sarcastic or not. Recognition of sarcasm can benefit many sentiment analysis NLP applications, such as review summarization, dialogue systems and review ranking systems. In this paper w...
متن کامل